Primitive derivations, Shi arrangements and Bernoulli polynomials
نویسنده
چکیده
LetW be a finite irreducible real reflection group, which is a Coxeter group. A primitive derivation D, introduced and studied by K. Saito (e.g., [4]), plays a crucial role in the theory of differential forms with logarithmic poles along the Coxeter arrangement. For example, we may describe the contact order filtration of the logarithmic derivation module using the primitive derivations ([10, 1]). The contact order filtration is closely related to the Frobenius manifold structure of the orbit space. In particular, let W be a finite Weyl group. We have the central (extended) Shi arrangements Shi(W ) in V by “deforming” the associated Weyl arrangement A(W ) using the root system as in [5]. The arrangement Shi(W ) was proved to be free by M. Yoshinaga in [12]. Let (A(W ), 2k) be the multiarrangements with constant multiplicity 2k. Since the derivation modules D(A(W ), 2k) is W -isomorphic to the W -module V by [6, 9], we have the following key commutative diagram
منابع مشابه
Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کاملNumerical solution of a class of nonlinear two-dimensional integral equations using Bernoulli polynomials
In this study, the Bernoulli polynomials are used to obtain an approximate solution of a class of nonlinear two-dimensional integral equations. To this aim, the operational matrices of integration and the product for Bernoulli polynomials are derived and utilized to reduce the considered problem to a system of nonlinear algebraic equations. Some examples are presented to illustrate the efficien...
متن کاملBernoulli collocation method with residual correction for solving integral-algebraic equations
The principal aim of this paper is to serve the numerical solution of an integral-algebraic equation (IAE) by using the Bernoulli polynomials and the residual correction method. After implementation of our scheme, the main problem would be transformed into a system of algebraic equations such that its solutions are the unknown Bernoulli coefficients. This method gives an analytic solution when ...
متن کاملHigher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملThe Bernoulli Ritz-collocation method to the solution of modelling the pollution of a system of lakes
Pollution has become a very serious threat to our environment. Monitoring pollution is the rst step toward planning to save the environment. The use of dierential equations, monitoring pollution has become possible. In this paper, a Ritz-collocation method is introduced to solve non-linear oscillatory systems such as modelling the pollution of a system of lakes. The method is based upon Bernoul...
متن کامل